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1. Introduction

A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known
inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in
Cartesian (x,y.z) space, such as simple tracking along one or more straight line paths or following a specified surface
with compliant force sensors and/or visual feedback. In all cases, control is gctually implemented through coordinated
motion of the various links which comprise the manipulator; i.e. in link space.”As a consequence, the control computer
of every *sophisticated” anthropomorphic robot must contain provisions for solving the inverse kinematic problem
which, in the case of ¥simple’, non-redundant position control, involves the determination of the first three link angles,
,0,, 85, and 0,, which produce a desired wrist origin position P, Pyws and p,, at the end of link 3 relative to, some fixed
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t be noted, however, that these analytical inverse
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which presents one such solution for the PUMA 560
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We should also note that this problem ‘becomes signific
addressed simultaneously; i.e. when a desired endsgffector or
tainly, any technique which can *‘simplify’” solutiorg to the”inverse kinematic question in robotics can have a sigaificant
impact not only on the computational requirements lved with robot control, but also on the diversity of tasks the
manipulator can perform. The primary purpose of s er will be (o thoroughly evaluate, extend, and demonstrate a
new compuational technique for solving the complete cgnﬁg ration (position and orfientation) inverse kinematic problem
for a variety of mudti-link mnipula;r} (’Q N
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2. A Complete Inverge Kinematic Solution [/

To motivate the morw general, six degree of freedom solution to the inverse kinematic problem associated with the
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overall configuration of the end effector, we will first present a solution to the three degree of freedom inverse kinematic
problem associated with only the position of (say) the wrist origin associated with the end of the third link of a six link
manipulator. The particular solution given here follows directly from that given in [2] with J¥ replaced by J™!, as sug-
gested in [2] and later implemented in [3], where J denotes the well known Jacobian matrix of the manipulator. More
specifically, the time differentiation of (1) directly implies that

6, 3, ]
00; 30, 06, 3
1
. aGy 3Gy oG,y ||
X= 15 3, 3 ||| ®
G, %6, 2, |0
(36, 26, 00; |

with the Jacobian J being a matrix of partial derivatives, as specified via equation (3).
In light of the preceding, now consider the closed loop dynamical system depicted in Figure 1, which is *“driven’
by some desired wrist origin position in Cartesian space, namely ‘

R Pawa
Xa= |Pywe @)
Pwd

It can be noted that in Figure 1, K might be a (3x3) arbitrary, diagonal, time-invariant gain matrix, 0, would be a time
varying 3-vector system output which represents the derivative of the desired link angle displacement which, when
integrated, yiclds the 3-vector output representative of the link angle displacement, 6, , and G(-) represents the forward
kinematic operator defined by equation (1).

We might next define the equations which describe the dynamical behavior of the Figure 1 system, namely

8, = I"N(O)K(X, - X, ®)
and

Xe=G®y. 6

Clearly, the premultiplication of (5) by J(6,) and the subsequent substitution of 5(, for J(O,)é,, in light of (3), then implies
that

X, = K(Xq - Xy, Q)

or that X, has a dynamical system representation as depicted in Figure 2. The reader. will immediately recognize the sys-
tem of Figure 2 as a parallel combination of three relatively simple, decoupled, first order, linear, time invariant systems
with arbitrarily adjustable (via the elements of K) stability properties. In particular, if X, represents a step input of mag-
nitude X, (actually a 3-vector step input), applied at time to, then it is easy to show that for zero initial conditions on X,,

X,(t) = [1 - e"“"‘°’]xd . @®)

_or that for K positive definite, X,(t) will track the desired Cartesian position Xy(t) = X with an (arbitrarily fast) exponen-
tially decaying error! In light of (6), it therefore follows that 81 can be made to approach the desired Oy which
corresponds to. Xy = G(8,) arbitrarily fast as well, '

The reader might next note that in order to make this inverse kinematic procedure applicable to more general
forms of robotic motion, it has to be “‘extended’’ to include inverse orientation information as well; i.e. solutions for 9,
05, and O of a general six link manipulator. However, the extension of the Figure 1 system to include orientation as
well as position is a non-trivial task, since (i) there is no-3-vector representation for orientation and (if) even it there
wete, the Figure 1 system would then require an analytical expression for the inverse of @ corresponding (6x6) Jacobian,
a formidable computational task. In light of these observations, we will now present, for the first time, u complete
dynamical system solution to the inverse kinematic problem for both position and orientation.

To begin, we first note that the orientation of (say) the tool frame relative to the {ixed base frame can be, and often
is, specified by an appropriate (3x3) orientation coordinate transformation matrix, often called a rotation matrix, of the
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- form _(using the notation in [1)):

a N, 3 : .
R} = [a.n,s]= a, n, s/, - (9)
a, n s, '
where the orthogonal unit vectors a, n, and s represent the approach, normal, and sliding vectors associated with the

orientation of the tool frame relative to some fixed base frame. Furthermore, since s can be obtained via the vector
cross-product relationship:

aa=s, (10

as described in [1), knowledge of a and n alone will uniquely specify orientation of the end effector.
We next note that if

o= |0, | an
W,

represents the angular velocity of the tool frame, then it is not difficult to show, in light of Figure 3, that @ can be

repreéented by the sum of its *‘translational component’* refative to the motion of a, namely the cross product axd, where
. a . . : . . . . -
as= g and its *‘rotational component’’ relative to the motion of a, namely the scalar velocity dot product s muliiplied

by a; i.e.
© = axa + (is)a . (12)

Furthermore, it now follows by expanding (12) in light of (9) that o is also given by the following matrix-vector product:

Sk Syd, S, 0 -a, a fiy 4
o= |53, sa, s,a, a 0 -a.l]. A F(9) i (13)
Sxdp Syd, S, -ay 3 0

The results which now follow build on the material presented in Section 4.3 of {1} which pertains to so-called
spherical wrist manipulators. In such cases, (4.3.2) of [1] establishes the fact that

e 8,
Ppw| - 0,
. D p . e 0 (}64].
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wy 0s
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or that the (6x6) Jacobian matrix associated with spherical wrist manipulators can be “triangularized”, with J, a (3x3)
*positional’’ Jacobian associated with the velocity of the wrist origin relative to motion of the first three links, and Jg a
(3x3) “‘orientation’” Jacobian associated with the angular velocity of the end effector frame relative to the motion of the
final three links.
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with the (6x9) “inverse”’ Jacobian, J;, given by the product of the (6x6) triangular inverse Jacobian defined by (15) and
theﬁ (6x9) “block diagonal’’ matrix consisting of an upper left (3x3) identity matrix I, and a lower right (3x6) F(), as
defined via (13).

We next note that the 9-vector ‘‘configuration”

x2|n|=00 an
a .
for a known G(-), with corresponding
Pw
X=|al. - (18)
a

As defined, X completely specifies both the (wrist origin) position' and the {end effector) orientation of any given mani-
pulator. ' :

Now consider the dynamical system depicted in Figure 4, which we claim “‘solves’ the inverse kinematic problem
associated with the complete configuration of six link, spherical wrist manipulators. In particular, the dynamical equa-
tions associated with Figure 4 are

8, = 18K [& - .x] . - 9)
with K a diagonal (9x9) gain matrix, and ] |
. - X=06(8). (20)
Since 0, is also equal to J;(8)X,, in light of (16) and (18), with X, arbitrary, (19) implies that
Z.S=K[7_(d"l(.:]» @

or that the 9-vector X, is analogous to the 3-vector X, of (7). This in tum implies that X, will track the desired Carte-
sian configuration X4 with an (arbitrarily fast) exponentially decaying error! As we noted earlier, it therefore follows that
0,(t) can be made to approach the desired 84 which corresponds to Xy = G(0,) arbitrarily fast as well. In other words,
the Figure 4 dynamical system solves for the first time the complete i:wverse kinematic problem for virtually any six link,
spherical wrist manipulator. )

Figures 5 and 6 depict actual simulated runs of the Figure 4 system for the PUMA 560 industrial manipulator, as
mathematically described in [1], when the (end effector) position vector (py, Py, p.) goes from (3.5, 2529 attp==0to
(1.5, 2.0, 4.4) at tr = § along a LSPB (Linear Segment with Parabolic Blend) trajectory® while the orientation of the end
offector frame undergees a simultaneous smooth transition for (ny, Ny, Ny, 3y, 3y, 2;) from (0, 0,-1,0, 1,000 (-1,0,0, 0, 0,
-1) over the same 5 second time interval. Only four of the nine elements of X are explicitly depicted, and in both cases,

(e term link space rather than joint space will be used here for reasons which are delineated in Section 1.4 of [1].

t Of course, for spherical wrist manipulators, knowledge of the wrist origin position and a; the approach vector, directly implies knowledge of the
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the initial conditions on 0, were appropriately set v insure that X, (0) = X4 (0) . It might be noted that in the Figure S
runs all nine of the nonzero, diagonal elements of K were set equal to 10, while these same nine elements were increased
to 100 for the Figure 6 runs. The reader will note that a rather small error exists between the desired and simulated
dynamical system configuration parameters depicted in the K=10 case. Moreover, this small error is essentially elim-
inated by increasing the (elements of the) diagonal gain matrix K to 100, as depicted in Figure 6; i.e. the desired and
simulated configuration parameters are so close that they are virtually undistinguishable in this latter case! This, in turn,
implies comesponding dynamical system link output displacement values which gre ‘‘very close’’ to those which would

Pwd
mathematically solve the inverse kinematic question for the given, desired Xg= |nq |, especially in the K=100 case. In

ay
summary, therefore, Figures S and 6 clearly illustrate the employment of the Figure 4 dynamical system as a viable
alternative technique for solving the inverse kinematic question for a large class of multi-link manipulators.

A number of observations are now in order relative to this dynamical system inverse kinematic solution. First of
all, we note that 6, is also obtained as an output of our dynamical system solution without explicit knowledge or use of X
! This could prove most useful in the implementation of a variety of control schemes which require desired link veloci-
. . . . . " . » . . e il
ties as well as positions; e.g. in relatively simple PID controllers, where D denotes the (time) derivative of the link posi-
tional drive signal. '

We next note that because of the spherical wrist assumption, we actually can determine an analytical expression for
the (6x9) “‘inverse’’ Jacobian, Ji(8), as defined by equation (16). For example, such an analytical expression is essen-
tially given in Example 4.3.23 of [1] for the PUMA 560 industrial manipulator. Certain earlier reports and texts have
implied that analytical expressions for J-! in the six link case are virtually impossible to obtain. In [1] we show that this
is not necessarily the case for spherical wrist manipulators, and here we exploit this observation to extend a three-
dimensional inverse kinematic positional result to the more general and important, six-dimensional configuration case.

We further note that the particular inverse kinematic (position and velocity) solutions we obtain via the dynanical
system of Figure 4 will be unique, and will depend on the initial conditions associated with the system. Different initial
conditions can be used to produce all of the solution sets associated with a given manipulator, if desired, or only the par-
tizular one “‘best suited’” to a specific task, such as (say) an arm right, elbow above trajectory for the PUMA 560 (see
Figure 3.4.56 of [1]).

We finally observe, again in light of Figures S and 6, that there is no need to sequentially solve a set of rather
complex and time-consuming Atan2 functions associated with a given robot to obtain the inverse kinematic link displace-
ments associated with a desired Cartesian’ configuration, Al'hough the computational savings associated with the direct
employment of the Figure 4 dynamical system, rather than the explicit solution of a sequential set of Atwn2 functions,
has yet to be completely determined, there is reason to believe that such savings can be rather significant.

3. Practical Consequences to be Investigated

There are numerous practical consequences associated with the new computational inverse kinematic procedure
which has just been outlined, and the primary purpose cf this section will be to delineate some of them. To begin, we
might again note the obvious, namely that the procedure can be directly utilized to produce desired link positional and
velocity drive signals to the link motors which then might be controlled by any *‘standard procedure’’, such as a unity
f.edback PID compensator, without the explicit evaluation of any analytical Atan2 functions. Of course, in such cases
and in the others which we will outline in this section, it is important to realize that a flexible control computer must be
employed in order to physically realize (say) the Figure 4 feedback system. In light of this observation, it is of interest
to note that a truly significant amount of robotics development effort within LEMS at Brown University over the pist
year has focused on the development of one such flexible control computer for robotic applications, namely SIERA (Sys-
tem for Implementing and Evaluating Robotic Algorithms).

SIERA is a unique multiprocessor system composed of two subsystems--a tightly-coupled real-time servo system
and a loosely coupled multiprocessor network (the **Armstrong system'), as depicted in Figure 7. A shared memory

end effector position as well, as is shown in {{].
t Bot references {1] and [6] describe such LSPB trajectorics.
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interface allows communication between these two subsystems. The architecture is flexible enough to accommodate a
variety of robots and sensors, since all robot dependent hardware is restricted to the robot interfuce board. Thus, we
have been able to control the Unimation Puma 560 and the IBM 7565 robots that are currently in our laboratory. A
detailed description of the SIERA hardware can be found in [4].

The SIERA operating system provides a flexible development system for research in robotic algorithms, without
miking the system too complex to be used for instructional purposes. This is accomplished by defining three different
programming levels: i) the user level, which is analogous to a commercial system such as Unimation’s VAL robot com-
mand language, ii) the researcher level, which fulfills the main objective of SIERA by allowing any type of robotic algo-
rithm to be added to the system, and iii) the expert level, which is used to add a new robot or to enhance the operating
system. It should be noted that the operating system is also generaily applicable since all (low-level) robot tasks are han-
dled by interface routines written by an expert level programmer. Fuither details of the operating system and the pro-
gramming levels can be found in [5].

Another potential use for our inverse kinematic procedure which has yet to be fully exploited is in the awomatic -
avoidance of d+eenerate configurations, such as those associated with Jacobian singularities. To be more specific, it is
well known t:-.. certain desired Cartes.an trajectories may imply corresponding link trajectories for which 1J(0)}, the
determinant of the Jacobian, approaches zero. In such cases, excessive link velocities are required to produce seemingly
well-behaved Cartesian motion. We feel that one way of automatically avoiding such degencrate configurations could be
to physically restrict the magnitude that |J(9,)| can decrease to in either the Figure 1 or the Figure 4 system. Although
such a procedure will not yield the desired Cartesian trajectories, hopefully it will yield **acceptable’” Catesian trajec-
tories which are **close 10"’ the specified ones. Some preliminary computer simulations bounding }J(0,}] have produced
rather encouraging results, and one of the primary objectives of our continuing rescarch will be to thoroughly investigate
this and other automatic degenerate conlfiguration avoidance techniques.

Another potential use of our inverse kinematic procedure is that associated with redundant manipulaiors; i.e. mani-
pulators which have more degrees of freedom than are necessary to achieve (say) desired end effector orientations. To
be more specific, it is well known that the inverse kinematic problem associated with redundant manipulators can have
an infinite number of solutions, and the problem then becomes one of appropriately selecting the *‘best’’ solution from
this intinite set. [t might be noted that one way of obtaining a variety of different link solutions, (say) in light of Figure
1, is to employ ‘‘diffzrent right inverse’ Jacobians instead of the square 140,y depicted. Our investigations are continy-
ing 1o determine how a “‘best right inverse’ Jacobian might be selected and utilized in our computational inverse
kinematic procedure in order to automatically yield a correspondingly ‘‘best” inverse kinematic solution for redundart
manipulators.

Another potentially important application of our computational inverse kinematic procedure concerns its employ-
ment in more sophisticated control strategies where knowledge of 0,(t), as well as 0,(t) and 0,(t), would be used. One
such example is that associated with the inverse dynamic, feedforward compensation procedure outlined in Section 8.5 of
(1}. We have already conducted some preliminary simulations of an*‘extended” version of the Figure 1 and Figure -
dynamical svstems (“extended’’ by the addition- of another parallel bank of integrators as well as appropriate feedback
edin matrices) in order to produce 05 as well as 0, and 0. One such “‘extended” system is depicted in Figure ¥ in ity
simplast (positional) form, The mathematical equations associated with such a dynamical system can directly be shown
to imply an analogous linear, time-invariant, second order differential equation relationship between input Xy(t) and out-
put X0, namely

X0 + AX(D) + KX(1) = Xo(D) , @2

which can then be used to establish convergence relations between 0,(1) and iis derivatives and the desired 8y(1) and its
derivatives, Results in this acea are still under development. In particulir, we are currently working on & more complete
mathematically understanding of the Figure 8 system, including the implications regarding the 0,(0), 0,(t), and 0,(t) thus
obtained, when compared to the desired values of 0y(t) and its derivatives in both the simple (positional). case depicted
and the Tull six depree of freedom configuration case. Here again, our initial simulations have been encouraging and we
Jre actively continuing these investigations. ’
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4. Summary

, We have now outlined a new computational procedure for solving the inverse kinematic question for a large class
" of multi-link manipulators. Furthermore, we have mathematically established the **equivalence’’ between this computa-
tiona! procedure and the behavior of relatively simple first and second order, linear, time-invariant dynamical systems.
We have indicated a number of potential practical consequences associated with the employment of this technique in
robotic applications, namely:

(i) its use in directly obtaining unique values for the inverse kinematic positions, velocities, and accelerations,

(ii) its potential for automatically avoiding degenerate configurations,

(iii) its ability to produce the ‘‘best’’ inverse kinematic solutions for redundant manipulators, and

(iv) its employment in more sophisticated motion control strategies.

We have expended a considerable amount of time and effort within LEMS in constructing a general purpose, flexi-
ble robot control system (SIERA) which can be used to thoroughly implement, test, and evaluate all aspects of our robot-
ics research program, and we have two industrial manipulators (a PUMA 560 anthropomorphic robot and an IBM RS/1
Cartesian robot) to employ in our studies. Our investigations are well underway, and we are very optimistic that
significant new techniques for robot control and manipulation will result as a consequence of these investigations.
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Figure 1

A Positicnal Inverse Kinematic Solution
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Figure 2

A Dynamical System Representation for XS

Figure 3
Rotation of the Tool Frame Relative to the Base Frame
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Figure 4

A Configuration Inverse Kinematic Solution
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Puma Simulation with K=10
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An "Extended” Positional Inverse Kinematic solution
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